

Company Timeline

First Production Program

A350 Build to Print – CFRTP and welded assemblies

NHRLNC aeraswift

2000

2003

2005

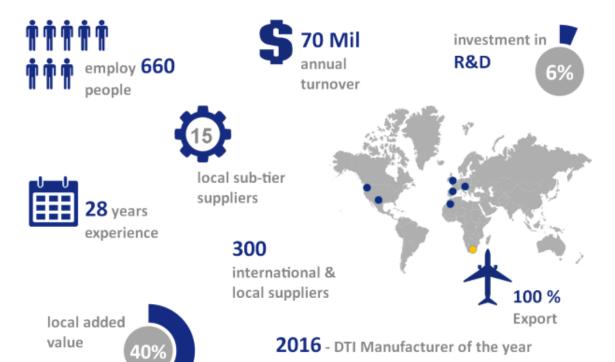
2007

2014

2016

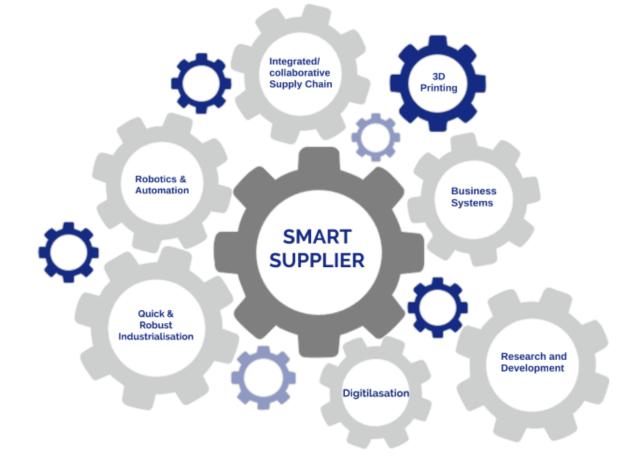
2018

Company formed

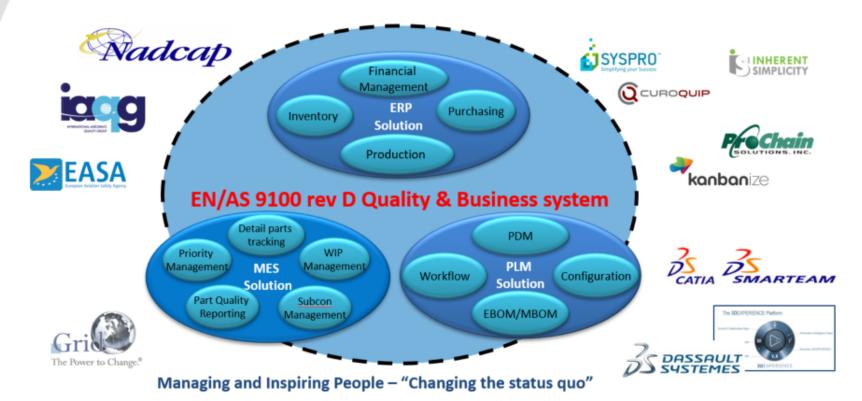

A320 Galley systems and welded assemblies.

Design and Build risk share partner on Airbus A400M

Built to fly

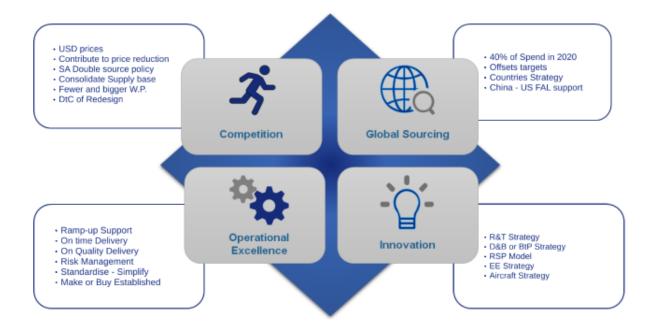

AEROSUD

2017 - DTI Exporter of the year


2018 - SADC Quality Award

Build smart. Fly further, faster

A smart supplier built on decades of innovation and versatility


Integrated Systems

The Market Reality

- 40% Rate Increase
- · 20% Cost reduction drive
- · Global Collaboration
- Innovation

Efficiency drive

Alternative supplier drive

Price reduction drives

Disruptive Manufacturing practices

Technology

effects of market reality

Global low cost sourcing

AEROSUD

Risk management oversight

10.

Industry 4.0

Inefficient supply chain actions

Increased quality audits

Open book pricing

Efficiency drive

Alternative supplier drive

Price reduction drives

Disruptive Manufacturing practices

Technology

effects of market reality

Resulting conflict:

Profitability vs Reliability

Global low cost sourcing

Risk management oversight

Increased quality audits

Industry 4.0

Open book pricing

AEROSUD

Inefficient supply chain actions

Building and ever flourishing Aerospace company

Adopting Theory of Constraints as a business methodology

Reliability Model = Stability + Growth

Key Implementation steps:

- TOC adopted in all aspects of the supply chain
- · Comprehensive Goal Tree
- · Logical Thinking tools
- Critical Chain Program Management
- · Use of Throughput Accounting
- Consumption based replenishment (DDMRP)
- Management in full Supply Chain
- Deployed GRID to influence Cultural behaviour

Key Results achieved:

- Production lead time reduction from 50 to 17 days
- WIP and SOH reduction by 30%
- · High reliability in new part Industrialisation and
- · On time project completion
- Increased Throughput by 20%
- · Reduced intervention and expediting
- · Initiation of new strategic growth and Investment areas
- New Service offering

Purpose:

Growth-Bilateral between Government and Industry to significantly boost SA Commercial Aviation Manufacturing Exports through:

- · Integrated Industry Growth Plan
- · Expanding Advanced Manufacturing
- Future-orientated competitiveness (IoT, Ind 4.0)

and in particular

Promote direct partnerships with international Original Equipment Manufacturers (OEM's) and/or Technology partners, to demonstrate and showcase local industry capabilities and capacities to collaborate.

Forging stronger ties with the global Aviation Manufacturing.

Commercial Aviation Manufacturing Industry in South Africa

CAMASA - Domestic Collaboration

Aerospace Industry Support Initiative and Centurion Aerospace Village (the dti)

Provincial & Regional Economic Development Agencies

Titanium powder Production & Additive Laser Manufacture (ALM)

Scientific & Industrial Research and Innovation

Advanced manufacturing & Tooling skills

STELLEMBOSCH TECHNOLOGY CONTRE

Cross sectorial Composite Industry capability

Transport and Manufacturing sectors skills development

CAMASA - Centurion Aerospace Village

- Contribute 43% of GDP
- · 25% of SA's mineral production
- · World class Industrial infrastructure, roads, communication
- Main manufacturing center 50% of all factories in SA

Aerospace Manufacturing Industry Requirements


•	Apprentice Training Centre	1 000 - 2 000 sqm
•	SMME & Incubation centre	200 - 2 000 sqm
•	Attract 5 – 10 SMME's to expand	500 - 2 000 sqm
•	Advanced Manufacturing Showcase	3 000 - 5 000 sqm

Surface Treatment and Painting facility 1 500 – 3 000 sqm

Hard metal machining facility 1 000 – 2 000 sqm

Large assembly facility
 Central Logistics & Warehousing
 10 000 sqm
 10 000 sqm

BRICS Collaboration

BRICS countries encompass 42% of the world's population and cover 26% of the world's territorial area. Additionally, Intra-BRICS trade now accounts for approximately 18% of global trade, and its young people make up 47% of the world's youth (aged 15-24).

With their economic aggregate covering 23% of the world's total, the five countries of the BRICS, along with other emerging-market countries, have become the main engines op global growth. The immanence of the Fourth Industrial Revolution and the rise of the digital economy loom over each BRICS country; both are full of promise and peril.

Agreed focus areas for BRICS Aviation Work stream

Regional Aviation Seminar:

- · Public Policy and Regulations
- Airline Business models
- Infrastructure
- CNS/ATM

Skills development & Qualifications:

- Pilot training
- · MRO Engineering and Technicians
- Aviation school

B2B Supply Chain Development:

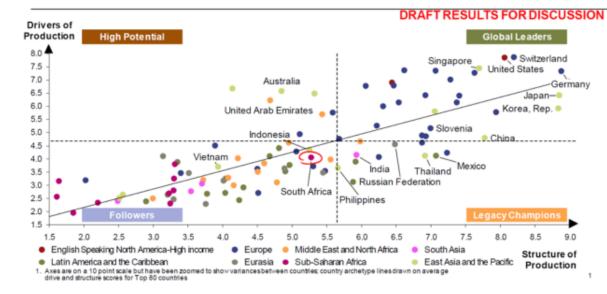
- · Capability assessment
- · Capacity Development
- SME development

Development Funding:


- BRICS Aviation Fund
- NDB New Development Bank
- · Venture Capital (Angel network)

Future of Production in South Africa

Readiness for the Future of Production Report 2018


The country archetype framework has been applied to conduct analysis 1 of the 100 countries included in the beta model

COMMITTED TO IMPROVING THE STATE OF THE WORLD

In collaboration with A.T. Keamey

Future of Production in South Africa

Made in Africa

Manufacturing and the fourth industrial revolution

Recommendations

- Capitalising on the opportunities presented by the fourth industrial revolution will require a concerted effort from African governments that will have to lead the charge.
- Leaders in key growth-locomotive countries need to implement concrete measures such as the establishment and support of special economic zones and clear national and regional industrial policies.
- Developmentally focused leaders need to put the right incentives in place, such as export orientation, support to embryonic manufacturing, and policies to move labour and capital into more productive enterprises.
- Rapid growth in manufacturing, agro-industry and tradable services requires access to

- larger markets, hence the imperative of progress with regard to Africa's regional economic integration.
- Nationally, industrialisation efforts require welladministered, supportive public policies and effective administrative systems.
- Efforts to combat corruption associated with facilitating export procedures, such as removing trade friction costs due to poor logistics, require specific and ongoing attention.
- The private sector needs effective government support, such as tax incentives and institutional reforms, to lower transaction costs in customs and business regulation to offset the costs for first movers.

A decade of development Collaboration 2008-2018

Focus Areas and Outcomes

- Long term friendships built on research
- Programmes including 7 Fraunhofer institutes
- Deep integration in SU Engineering department

Future projects 2019 - 2023

Heat Assisted Forming Benchmark study Composite demonstrator Ultra high pressure forming

High Performance Machining of Light Metals 2008 -2013

Resource Efficient Process Chains 2013- 2018

Stellenbosch Technology Centre 2016

Superplastic forming of Ti64 sheet 2016-2019

MOU signed February 2018

Metallic Forming limit curves 2018 - 2019

Active projects

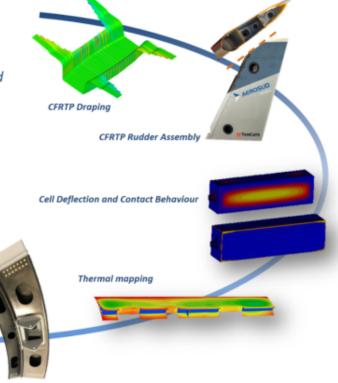
Digitalisation of CFRTP Forming and Cellular Core **Technology Development Cycle**

Focus Areas and Outcomes

CCT Manufacturing process (cure) digitalization

MSC Marc® Non Linear simulation for design feasibility and optimisation

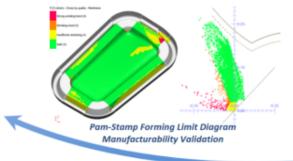
- Established interact between the thermoplastic cell, thermoset layup and metallic bond assembly tool
- Final component geometry and internal stress state
- Eliminating expensive "trial and error" prototype manufacturing

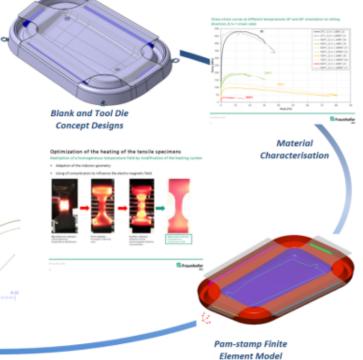

CCT tooling and component thermal digitalisation

MSC SC Cradle® CFD simulation for thermal mapping of tools and components

- Efficient autoclave loading configuration
- Location of control thermocouples

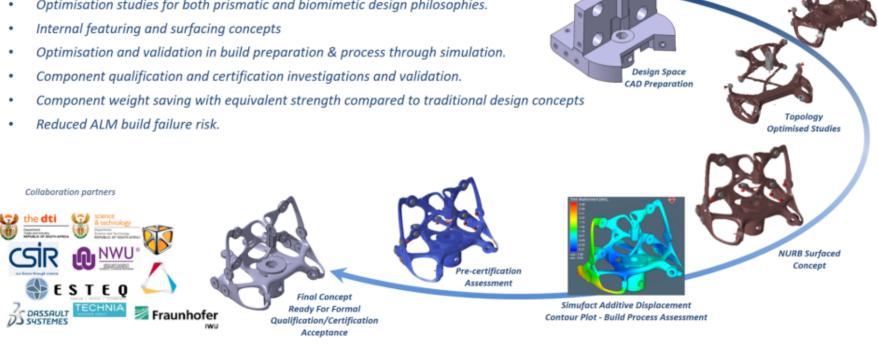
Large Engine Intake


Torque Box Demonstrator


Digitalisation of Advanced Metallic Forming

Focus Areas and Outcomes

- · Stamping and fluid cell forming process digitization
- ESI Group Pam-stamp forming simulation software is used for concept feasibility studies, tooling and blank optimisation and manufacturability validation.
- Efficient tooling and blank concept development.
- · Less dependant on "trial-and-error" method for concept validation.
- Cost saving with the improved accuracy of final components



ALM Knowledge base

- Design and Optimisation for certification

Focus Areas and Outcomes

Optimisation studies for both prismatic and biomimetic design philosophies.

Trusted Online Community

Monthly Newsletter

Industry 4.0 for South Africa

Visit the website

Foundation(s) of I4.0

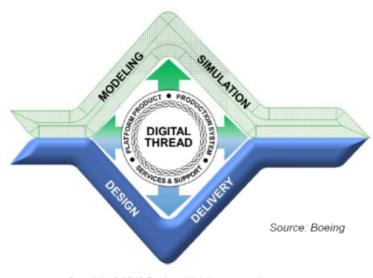
- IT Infrastructure
- Processes and Procedures
- Value streams
- Business Model

Pillars of I4.0

- Big Data
- Augmented Reality
- Simulation
- Internet of Things
- Cloud Computing
- Cyber Security
- Systems Integration
- Additive Manufacturing
- Autonomous Systems

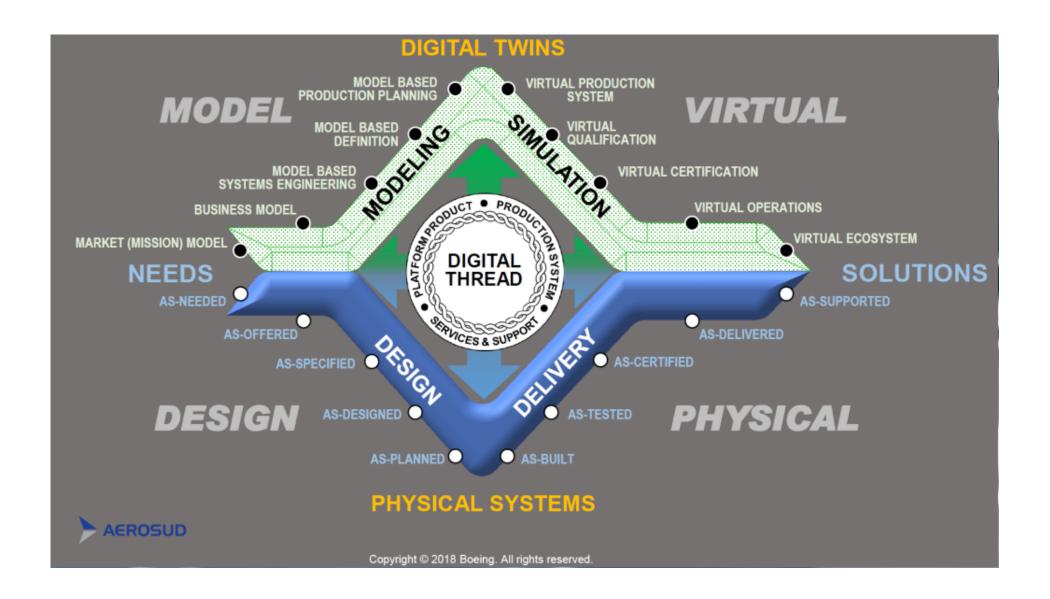
"Soft" Issues

- Culture of the organisation
- Awareness in the organisation
- Knowledge in the organisation and or access to such knowledge
- Mind set of the people involved and affected in the organisation
- Approach to the challenge(s), i.e. a "roadmap" for the I4.0 journey


Design for Certification

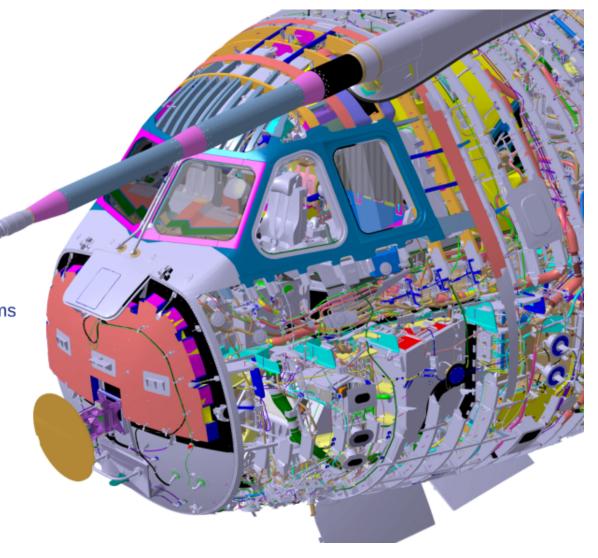
1990s SE V

https://ops.fhwa.dot.gov/publications/seitsguide/section3.htm

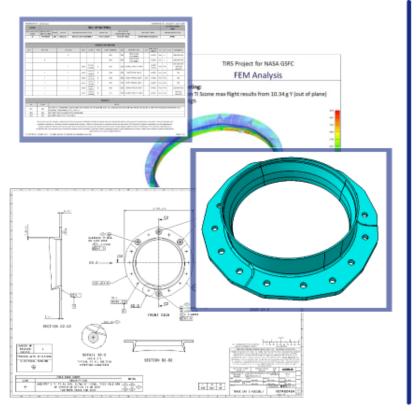

2020s MBE Diamond

Copyright @ 2018 Boeing. All rights reserved.

Transitioning from a document-focused mindset to a digital engineering mind set that leverages information flow across the lifecycle.

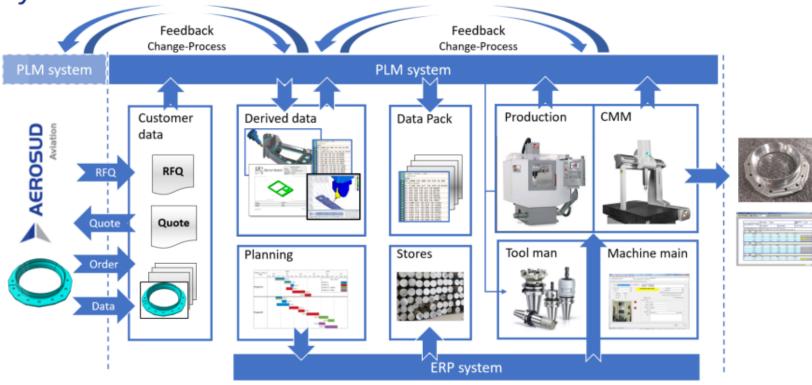


Digital Twin

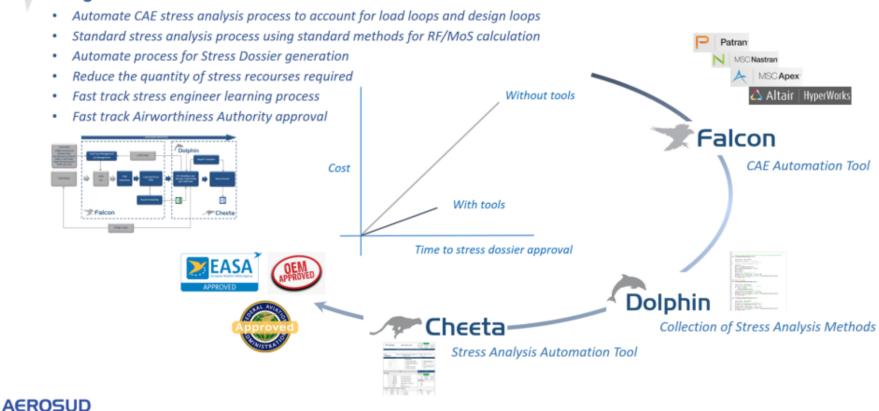

Company Experience

- Collaborative Design
- Concurrent Engineering
- Digital Mockup
- Around the world
- Integration across different PLM systems

Design & Build risk sharing partner



Digital Twin Part



Digital Twin Facility

Design for Certification

Design Automation Tools

PLM Systems on the market

High End

TeamCenter, 3D Experience, Windchill, SAP PLM

- Comprehensive functionality
- Expensive
- Long to implement
- Complex

AEROSUD

Entry Level

Autodesk Vault, Solidworks PDM, Various cloud based sysems

- Easy to implement from the box
- Limited functionality
- Not very customisable
- Very little local expertise

PLM Systems on the market

High End

TeamCenter, 3D Experience, Windchill, SAP PLM

- Comprehensive functionality
- Expensive
- Long to implement
- Complex

Serious commitment

AEROSUD

Entry Level

Autodesk Vault, Solidworks PDM, Various cloud based sysems

- Easy to implement from the box
- Limited functionality
- · Not very customisable
- Very little local expertise

Does not deliver

aras INNOVATOR®

aras INOVATOR®

Comprehensive functionality
Fully Customisable
Low startup cost
Quick, agile implementation
Business Automation Framework

aras INOVATOR®

Comprehensive functionality
Fully Customisable
Low startup cost
Quick, agile implementation
Business Automation Framework

Local Expertise?

Transform to Survive & Thrive ...

Our goal...

We believe that we can share and transfer our skills and experience to other businesses in such a manner that it provides solutions to their immediate challenges so that the businesses and we can continue to thrive.

Our origin...

We have gained our real-life skills and experience across business functions and systems over the last 10 years in the high volume manufacturing environment of Aerosud Aviation.

Best practice Mode of Operation

Best practice Mode of Operation

Data Management

Best practice Mode of Operation

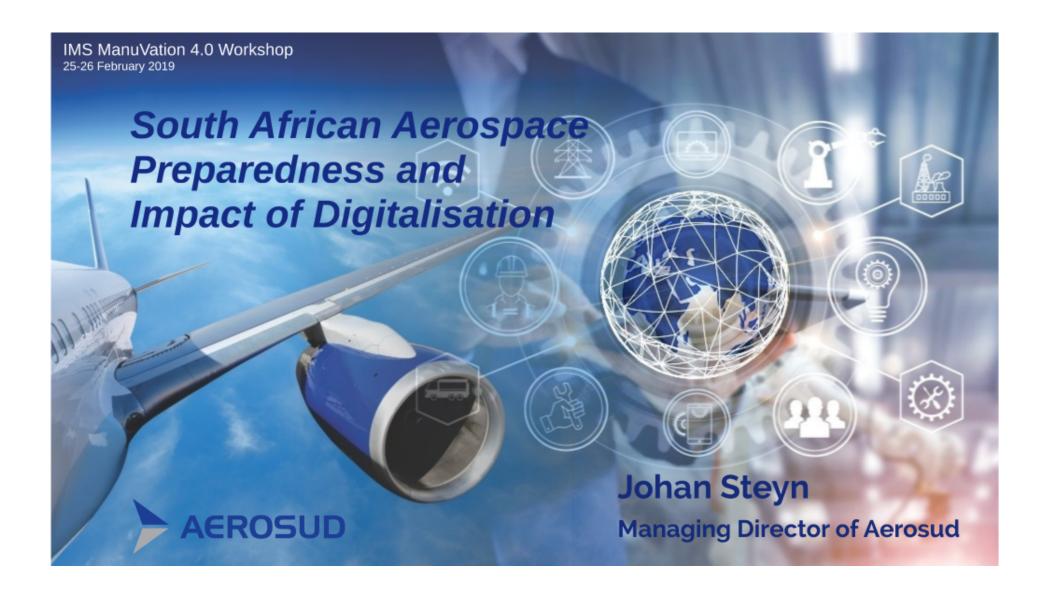
Digital Twin - Parts

Data Management

Acceptance Criteria	Data Exchange	
Tool Management	Kitting	
Quotations	Machine Maintenance	
Quality Management	Change process	
Project Management	Process Planning	
Digital Twin - Parts		
Data Management		

Digital Twin - Facility			
Acceptance Criteria	Data Exchange		
Tool Management	Kitting		
Quotations	Machine Maintenance		
Quality Management	Change process		
Project Management	Process Planning		
Digital Twin - Parts			
Data Management			

	Digital Twin - Facility		
	Acceptance Criteria	Data Exchange	
	Tool Management	Kitting	
Reporting	Quotations	Machine Maintenance	
and Dashboards	Quality Management	Change process	
	Project Management	Process Planning	
	Digital Twin - Parts		
	Data Management		


Johan Steyn Managing Director johan@aerosud.co.za www.aerosud.co.za

Johan Pretorius 4IR Co-ordinator j.pretorius@aerosud.co.za www.4ir.co.za

